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This paper investigates the issue of evolutionary design of controllers for hybrid mechatronic systems. Finite State Automaton
(FSA) is selected as the representation for a discrete controller due to its interpretability, fast execution speed and natural
extension to a statechart, which is very popular in industrial applications. A case study of a two-tank system is used to
demonstrate that the proposed evolutionary approach can lead to a successful design of an FSA controller for the hybrid
mechatronic system, represented by a hybrid bond graph. Generalisation of the evolved FSA controller to unknown control
targets is also tested. Further, a comparison with another type of controller, a lookahead controller, is conducted, with
advantages and disadvantages of each discussed. The comparison sheds light on which type of controller representation is a
better choice to use in various stages of the evolutionary design of controllers for hybrid mechatronic systems. Finally, some
important future research directions are pointed out, leading to the major work of the succeeding part of the research.
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1. Introduction

Mechatronic systems are the complete integration of me-
chanics, electronics and information processing. Tight in-
tegration of these domains makes them highly dependent
on each other. Design choices in one domain affect the per-
formance of the other domains. Therefore, design of such
a system usually requires iterations in each domain (Li,
Zhang, and Chen 2001) in order to find an optimal balance
between the basic mechanical structure, sensor and actu-
ator implementations, digital information processing and
overall control. In an effort to automate the generation of
mechatronic systems spanning multiple domains, an ap-
proach that combines the bond graph (Karnopp, Margolis,
and Rosenberg 2005) representation and genetic program-
ming for search was proposed (Seo, Fan, Hu, Goodman,
and Rosenberg 2003; Fan, Seo, Hu, Goodman, and Rosen-
berg 2004a; Fan, Wang, and Goodman 2004b; Wang, Fan,
Terpenny, and Goodman 2005, 2008; Fan, Wang, Achiche,
Goodman, and Rosenberg 2008). In this previous work,
good results on a variety of case studies have been pre-
sented, including electrical filter design (Seo et al. 2003;
Fan et al. 2004a), typewriter redesign (Fan et al. 2004b),
co-design of controller and plant embodiment of a vehicle
suspension system (Wang et al. 2005, 2008) and microelec-
tromechanical systems (Fan et al. 2008). However, all the
case studies presented were limited to time-driven systems.
Since most mechatronic systems involve both time-driven

∗Corresponding author. Email: zfan@stu.edu.cn

and event-driven dynamics, study of evolutionary design
of discrete controllers provides an important step toward
automated design of hybrid mechatronic systems.

Such hybrid systems may be viewed as an extension of
a classical time-driven system, typically modelled through
differential or difference equations, with occasional dis-
crete events causing a change in its dynamic behaviour.
When such an event takes place, the system is thought of as
switching from one operating mode to another. Hybrid or
switched bond graph representations (Strömberg, Nadjm-
Tehrani, and Top 1996; Mosterman 1997) have been pro-
posed to model physical dynamic systems with this type
of discontinuity. This hybrid system representation extends
the normal bond graph by adding a switch element that acts
either as a flow source or as an effort source, according to
the current system state or controller action. With this type
of modelling, a supervisory control system (Ramadge and
Wonham 1987; Koutsoukos, Antsaklis, Stiver, and Lem-
mon 2000) can then provide a decision-making ability to
control a plant in a compact way. The resulting hybrid sys-
tem can be represented as in Figure 1 (Koutsoukos et al.
2000), where the hybrid bond graph represents the plant
and the controller governs the state of the switch elements
in the bond graph. The interface acts as a translator between
the continuous space and the discrete controller space. The
switches in the hybrid bond graph act as the actuators issu-
ing the commands u(t) to the plant based on the output of the

C© 2013 Taylor & Francis
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Figure 1. Representation of a general hybrid control system. In
this work, the plant is modelled using a hybrid bond graph and the
controller is represented by a finite state automaton.

discrete controller u[n]. The generator generates relevant
discrete symbols, x[n], to be interpreted by the controller
from the continuous dynamic behaviour of the plant, which
is represented by state x(t).

This article presents the first part of the research that
aims to extend the previous evolutionary design approach
to hybrid systems that can be represented by hybrid bond
graphs. In this part, we focus on investigating evolution-
ary design of controllers with a given plant. In the second
part, we will extend the work to cases where the plant is
open-ended and topology becomes evolvable. In both cases,
controlling the switch reconfigurations in the hybrid bond
graphs plays a critical role in achieving the desired over-
all performance of the system. It is important to note that
the discrete controller for switch reconfiguration cannot be
represented by a bond graph, and hence cannot be evolved
as part of the overall bond graph structure covering both
controller and plant, as done for the design of the active car
suspension control system in Wang et al. (2008). It is there-
fore important to find a suitable evolvable representation
for controllers of hybrid mechatronic systems.

Several techniques have been proposed over the years
to automate discrete controller design, which is different
by its nature from the discrete optimisation problem (Chen
et al. 2010). For example, neural networks with evolvable
topologies (Stanley and Miikkulainen 2002) can be used
for controlling both time-driven and discrete-event systems.
However, it is normally difficult to decipher or interpret a
rule set from the neural network representation. Actually,
for discrete controllers, finite state automata (FSA) are a
more popular choice, which can also be used to model an

adaptive fuzzy controller (Kung, Huang, and Tsai 2009),
and are easily interpreted as a set of rules. The interest
in evolution of FSA has a long history, starting almost
50 years ago with the work of Larry Fogel (Fogel 1962),
and is still active today (Dunay, Petry, and Buckles 1994;
Benson 2000; Ashlock 2006). In our work, we selected the
FSA representation for the discrete controller due to its
interpretability, fast execution speed and natural extension
to a statechart, which is a very popular tool to describe
discrete controllers in industrial applications.

Other approaches have also been proposed to deal with
the specific aspects of hybrid system control (Stiver, Kout-
soukos, and Antsaklis 2000; Bemporad 2003; Sun and Ge
2005a,b; Cormerais, Buisson, Richard, and Morvan 2008).
For example, Sun and Ge (2005a) establish different condi-
tions for stability and controllability of switched systems,
and argue that the optimal control problem of switched sys-
tems is in general difficult to solve due to the involvement of
the switching signals. Bemporad (2003) shows how model
predictive control (MPC) could be applied to achieve opti-
mal control solutions in the specific case of systems with
multiple actuators and sensors, but with a fixed state matrix.
Unfortunately, the systems represented by our hybrid bond
graph cannot fall into this class because the reconfiguration
of switches in our systems can induce changes in the state
matrix.

Passivity-based control (PBC) (Ortega, Perez,
Nicklasson, Sira-Ramirez, and Sira-Ramirez 1998) has
also been successfully applied in many switching systems,
especially in the field of power electronics. Cormerais
et al. (2008) show how this can be applied from a hybrid
bond graph representation of a multi-cellular converter,
where switches commutate by pairs. In that case, all the
configurations of the system can be represented by a single
group of state equations (Buisson, Cormerais, and Richard
2002), allowing the PBC to be applied directly.

Another interesting approach to the control of a hy-
brid system is shown by Stiver, Koutsoukos, and Antsak-
lis (2001). This approach proposes to compute the natural
invariants of the dynamical system from the systems char-
acteristic equation, which are then used to partition the con-
tinuous state space. Once the divisions of the state space
are defined, an FSA controller can be deduced. However,
the solving of the characteristic equation is often compu-
tationally very expensive, if not impossible. Furthermore,
the computed divisions are only valid for a specific target
point. When the target is changed, a new partitioning needs
to be made, which makes the approach extremely expensive
to apply in practice.

In addition, all these approaches share a common fea-
ture of requiring human designers to conduct an intensive
analysis of the control system based on very precise mod-
elling, which makes them less interesting to us because
this presents great difficulties for automated design. We,
therefore, selected the lookahead controller, a member of
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the MPC family, for a comparison study with the FSA
controller. In particular, we used a one-step lookahead con-
troller to reduce the computational complexity.

In summary, the paper presents a comparative study
of two controller representations in the framework of evo-
lutionary design of both controller and plant of a hybrid
dynamic system, in order to explore which representation
better promotes evolvability of a useful design, depending
on the formulation of the problem. The remainder of the
paper is organised as follows. Section 2 describes the bond
graph modelling of the two-tank system that was used as
the case study. Then, Section 3 presents the work on evolu-
tionary design of FSA controllers, while Section 4 presents
the results obtained with the lookahead controller. Results
of both approaches are compared and discussed in detail
in Section 5. Finally, Section 6 concludes the paper and
provides some important perspectives for future work.

2. Presentation of the case study of the two-tank
system

Multiple-tank systems are often encountered in the research
literature concerning non-linear multi-variable feedback
control, as well as in fault diagnosis (Sainz, Armengol, and
Vehi 2002; Wu, Biswas, Abdelwahed, and Manders 2005).
The mechanical simplicity and the ease of getting physi-
cal insight into the system behaviour, combined with the
achievable control complexity, make the multi-tank prob-
lem a very attractive testbed. A two-tank system was de-
fined to test the controller synthesis methodology presented
in this paper. Figure 2 shows the actual configuration. A
pump is continuously filling the left tank at a constant flow

Figure 2. The two-tank system.

Figure 3. The hybrid bond graph of the two-tank system.

rate, and a set of valves allows draining of each tank inde-
pendently and also allows bidirectional transfer from one
tank to the other.

The hybrid bond graph of this two-tank system is
shown in Figure 3. The pipe and valve restrictions are repre-
sented by resistive components, R, while the tanks are rep-
resented by the capacitances, C. The input from the pump
is modelled as a flow source Sf and the valves are modelled
by switch components, Sw. These switches act as a 0-flow
source or a 0-effort source, depending on their states. A
0-flow source imposes a flow equal to zero at the junction
connected to it, therefore the valve is said to be closed as no
fluid is able to pass through it. A 0-effort source indicates
that the switch does not impose any restriction on the flow.
The valve is then said to be open.

The vector state equation of the two-tank system can be
obtained from the hybrid bond graph :

ẋ1(t) = f − u1(t)

R1

(
x1(t)

C1
− x2(t)

C2

)
− u2(t)

R2

x1(t)

C1

= g1(x(t), u(t))

ẋ2(t) = u1

R1

(
x1(t)

C1
− x2(t)

C2

)
− u3(t)

R3

x2(t)

C2

= g2(x(t), u(t)), (1)

where x denotes the state vector and u the input vector. The
level y of tank i can be obtained from the state variables :

yi = xi(t)

Ciρg
, (2)

where ρ is the fluid density and g is gravity. This system of
equations can also be expressed using the matrix formula-
tion:

ẋ(t) =

⎡
⎢⎣

− u1(t)

R1C1
− u2(t)

R2C1

u1(t)

R1C2
u1(t)

R1C1
− u1(t)

R1C2
− u3(t)

R3C2

⎤
⎥⎦ x(t) + f

0

y(t) = diag
1

C1ρg

1

C2ρg
x(t). (3)

D
ow

nl
oa

de
d 

by
 [

Si
ch

ua
n 

U
ni

ve
rs

ity
] 

at
 0

5:
12

 3
0 

N
ov

em
be

r 
20

15
 



306 J.-F. Dupuis et al.

Figure 4. Encoding example. (a) Transition table, (b) genotype and (c) phenotype.

Therefore, the equation in state-space form for this two-tank
system is:

ẋ(t) = A(u(t))x(t) + B

y(t) = Cx(t). (4)

3. Evolved FSA controller

3.1. Encoding scheme

Evolutionary computation has been applied in controller
design in many applications (Wai and Tu 2007; Yu and
Kaynak 2009; Samosir and Yatim 2010). In this work, a ge-
netic algorithm is used to evolve the controller, and the en-
coding scheme used in this paper is adopted from Ashlock
(2006). The controller trained in our research is an FSA
having a fixed number of states, N. Each state corresponds
to a possible switch configuration in the hybrid bond graph.
In fact, each bit of the binary representation of a state’s
numeric value is associated with an individual switch.

The transitions used in this implementation of the FSA
do not have any actions associated with them; they simply
specify what the new state will be, in reaction to the input
symbol received. The state of the FSA directly defines the
‘ON’ / ‘OFF’ status of an individual switch, and thus the
behaviour of its linked actuator.

As a result, the controller can be expressed as a ma-
trix with current states as row indices and received input
symbols as column indices. The elements of the matrix
then specify the next state to which the FSA should move.

An initial state must also be defined outside this matrix to
complete the definition.

The transition table matrix is encoded in a bit string
with ceil(log2N) bits per element, and an extra set of bits at
the end to define the initial state. With N states and M input
symbols, the length of the evolved bit string is given by:

ceil(log2 N )(NM + 1). (5)

Figure 4 shows the proposed scheme used in a simpler
case with only four states and two input symbols. In this
example, only two bits are needed for each state. One can
see that the elements of the transition matrix are written
row by row to the associated genotype, and the last two bits
of the genotype indicate the initial state.

The controller associated with this example would be
able to control a system having two switches. Looking at
Figure 4 (c), we understand that in state 1 (01), the first
switch would be turned off, while the other would be turned
on. From this state, receiving either of the two input symbols
would make the system migrate to state 3 (11), where both
switches would be turned on. Then, receiving input symbol
1 would turn both switches off by establishing state 0 (00).

To evolve the controller, a simple genetic algorithm
(GA) is used, represented by Figure 5, with standard one-
point crossover, bit-flipping mutation and tournament se-
lection. Elitism was not used in this case because run per-
formed using elitism showed premature convergence that
greatly reduced population diversity. The parameters of the
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Figure 5. Genetic algorithm flow chart.

evolutionary algorithm are summarised in Table 1. The GA
implementation was done using the Open BEAGLE C++
framework (Gagné and Parizeau 2006) and the fitness eval-
uations were distributed on a cluster of computers using
MPI (MPI 2008).

3.2. FSA for the two-tank system

For the two-tank system, the FSA controller has eight states
with three switches. The input symbols are generated by the
interface when the state variables cross predefined surfaces
in the state space. These surfaces are separated into two
sets, one for each tank, and are defined as follow:

hi1 = yi − T1 + δ

hi2 = yi − T1 − δ, (6)

in which T1 is the desired level for tank i and δ is the
tolerance about the target. Each set separates the space into
three regions depending on whether the level of tank i is
above, below or at its target. Then nine symbols are formed
from the logical conjunction of the two sets. With 9 input

Table 1. Parameters used to evolve the FSA controller.

Objective: Find a finite state controller that minimises the
tank level errors.

Fitness: Sum of squared error from target of the worst
output, averaged over six training cases.

Selection: Tournament with size 2.
Termination: Maximum number of generations reached.
Parameters: Population size 300, 0.3 one-point crossover, 0.01

bit-flip mutation.

symbols, 8 states and 3 bits to represent each state, the bit
string to be evolved is thus (8 × 9 + 1) × 3 = 219 bits
long; note that we must also define an initial state in the
string.

3.2.1. Fitness evaluation

In the case of the two-tank system, the FSA controller was
trained to keep the fluid levels of the tanks following their
target profiles. When the fitness of the evolved controllers is
evaluated, for each simulation case, the system is integrated
for a period of 15 seconds. An objective function φ(i) is
computed for each tank at the end of the simulation, based
on the square of the level errors:

φ(i) =
∫ 15

0
(yi − Ti)

2dt, i ∈ 1, 2. (7)

The fitness of this simulation case is then defined based on
the larger objective function – i.e., the larger error of the
two tanks:

� = 1

max{φ(i) | i ∈ (1, 2)} . (8)

In our experiences, defining fitness in a maximisa-
tion/minimisation approach proved to be a more successful
than using average error of the two tanks as fitness. When
the average error was used for fitness, it was observed that
most of the time, one of the tanks sacrificed its own perfor-
mance for the other, which means that the evolved controller
would rather focus on improving performance of only one of
the tanks, while performance of the other was not improved
at all. This is because the potentially poorer performance of
the sacrificed tank could be compensated for by the perfor-
mance of the other tank, and together they could still yield
an improved average. On the other hand, if a fitness defini-
tion based on the worse performance is used, the evolution
improves the performance of both tanks, disallowing the
unwanted behaviour just described.

3.2.2. Training and testing

For evolutionary design of controllers, it is very important
to divide the experimental process into a training phase
and testing phase. The training phase evolves a controller
according to some training targets, and the testing phase
tests how well this evolved controller can generalise to
other targets not involved in the training phase. In order
for the evolved FSA controller to be able to follow a larger
spectrum of different targets, usually more than one target
should be used for training. In our experiments, we chose
to look at the average performance obtained on the six
randomly generated targets listed in Table 2 for training
purposes. Each experiment used a single HP ProLiant

D
ow

nl
oa

de
d 

by
 [

Si
ch

ua
n 

U
ni

ve
rs

ity
] 

at
 0

5:
12

 3
0 

N
ov

em
be

r 
20

15
 



308 J.-F. Dupuis et al.

Figure 6. Progression of the population fitness during the evolution of the FSA controller for the two-tank system.

SL165z G7 with AMD Opteron Processor 6168 (twelve-
core, 1.9 GHz, 12 MB L3 cache) with 64GB memory. It is
worthwhile to point out that six may not be the optimal num-
ber of targets to use for training. But because our current
work is only focused on demonstrating the feasibility of the
evolutionary approach for controller design, we leave the
further optimisation of the controller design to our future
work.

During the training phase, the progression of the evolu-
tionary process is shown in the fitness curve in Figure 6. It is
interesting to look at the performance of the best controller
obtained at the mid-point and the end of the evolution. The
behaviour of the controller at the 150th generation is shown
in Figure 8. Behaviour at the end of the evolution is shown
in Figure 9. Comparison reveals that ripples existing in the
middle stage of the evolution were largely eliminated at the
end of the evolution. This comparison demonstrates that
the proposed evolutionary design approach can evolve an

Table 2. Training target used to evolved the FSA.

t = 0 t = 5 t = 10

Case Tank 1 Tank 2 Tank 1 Tank 2 Tank 1 Tank 2

a 0.2 0.4 0.25 0.35 0.35 0.2
b 0.48 0.3 0.4 0.2 0.32 0.25
c 0.35 0.2 0.4 0.45 0.2 0.4
d 0.2 0.4 0.2 0.2 0.4 0.2
e 0.4 0.4 0.2 0.05 0.3 0.3
f 0.4 0.2 0.1 0.2 0.4 0.2

FSA controller with incrementally improving performance
to meet the predefined design targets. The best FSA con-
troller obtained at the end of the evolution is shown in
Figure 7 and its fitness for each training cases is listed in
Table 3.

In the testing phase, the performances of the best
evolved FSA controller, for which the phenotype is shown
in Figure 7, was then tested on a set of 20 targets generated
at random in order to verify whether the evolved controller
was able to generalise to other control targets not involved
in its training. Figure 10 shows the behaviour of the con-
troller on the 20 targets of the verification set. As can be
seen, the evolved controller generalises very well to the
randomly generated targets, with only one failure, the 13th
case, out of the 20 test cases.

4. The lookahead controller

A one-step lookahead controller was also implemented to
control the two-tank system and the DC-DC converter. The

Table 3. Fitness obtained on the training cases.

Case FSA Lookahead

a 23655.5 6313.70
b 40863.8 55102.14
c 48887.8 32965.03
d 24290.5 8887.00
e 24351.8 22476.39
f 22375.5 20479.45
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Figure 7. FSA controller for the two-tank system obtained at the end of the evolution.

one-step lookahead controller was chosen due to its simplic-
ity, as well as reasonable computing expense in real-time
execution. This controller will at run time, for each time
step, perform a simulation in order to predict the future
state variable values of the system, xSwi

, for all switch con-
figurations, SW = {Swi|i = 1, . . . , n}. Then, the chosen
configuration to apply for the next time step will be the
one having a direction most closely aligned with that to the
target point xd. Thereby, the controller minimises the angle
between the vector defined by the current state x and the
target xd and the vector defined by the current state and the
predicted system trajectory xSwi

:

argmin
Swi∈SW

(
arccos

(x − xd )(x − xSwi
)

|x − xd ||x − xSwi
|
)
. (9)

An important characteristic to note about this type of
controller is that it does not need to be trained or redesigned
for a specific system. The controller only needs an accurate
model of the system to be controlled in order to be able to
predict the future state of the system. The only parameter of
the controller is the lookahead horizon, which should be es-
tablished with regard to the available computing power and
sampling time between two adjacent controller commands
when the controller is in service. In our study, the looka-

head horizon was set to be one step, in order to minimise
computation time.

The fitnesses obtained by the lookahead controller on
the training cases are listed in Table 3. It can be seen from
Figure 11 that the lookahead controller failed to perform
well at reaching its targets on the second tank in the first
three cases, as seen in Figures 11 (f), 11 (d) and 11 (c).
In these cases, the desired target asks for a level in tank 2
higher than that in tank 1. From the inspection of Figure 2,
the only way to raise the level in the second tank is to first
raise the level in tank 1 and then transfer the fluid from
tank 1 to tank 2. Consequently, the level in tank 1 needs
to go away from its target in order to help tank 2 reach its
target. However, the one-step lookahead controller cannot
generate an action sequence to achieve this target.

Figure 13 reveals the evolution of the two tank levels for
the case of Figure 11 (d) under the supervision of both FSA
and lookahead controllers. The dashed and solid lines are
associated to the FSA and lookahead controllers, respec-
tively. From Figure 13, we can see that when the system
tried to make the transition from the first target t1 to the sec-
ond target t2, there was a bifurcation between the two con-
trol trajectories at point a. There, the lookahead controller
was not able to generate a control policy that would lead to
point b, but instead led the trajectory toward point c, since
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Figure 8. FSA controller behaviour on the training set for the
two-tanks system of the best individual at the 150th generation.

it was more in the direction of the target t2. However, once
at c, the trajectory was pushed toward the third target t3 and
then missed target t2, without being able to raise the level
of the second tank.

In order to achieve target t2, the controller would re-
quire a longer lookahead horizon in order to establish the
correct sequence of action showing the payback of leav-
ing the achieved level in the first tank. But when deal-
ing with a system exhibiting a small time constant, the
amount of simulation time required to go through a deep
tree of possible states can easily become too long for the
system to make a decision fast enough. Another prob-
lem is, depending on the complexity level of the control
task, it is not obvious in advance what the correct looka-
head horizon should be to accomplish all possible control
targets.

5. Discussion

5.1. Capability of evolutionary design

Even though simultaneously reducing error in both tanks
is not rewarded directly by the fitness function, the evolu-

Figure 9. FSA controller behaviour on the training set of the two-
tanks system. The tanks levels and desired targets are represented
by a solid and dashed line, respectively.

tionary algorithm was able to find an FSA controller pro-
viding the correct control sequence to meet the targets of
both tanks. The result shows that the control sequence can
drive the system away from the targets temporarily to make
the necessary compromise to achieve the overall optimal
performance. The results demonstrate the capability of the
evolutionary design approach to achieve controllers satis-
fying difficult control tasks.

5.2. Issue of optimal design of FSA controllers

It is noteworthy that even though our evolved FSA controller
has achieved apparent success in the case study, we can still
not consider them as globally optimal solutions. This is
because there are generally two aspects in FSA controller
design, namely, the actuator control (control sequence gen-
erator) and the symbol generator, as indicated in Figure 1
(Koutsoukos et al. 2000). By its nature, the evolved FSA
controller can only react when a predefined surface in the
state space is crossed. In our project, we chose to use some
very naive surfaces, basically defined based on the posi-
tions of targets in the hyperspace, as well as corresponding
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Figure 10. The behaviour of the evolved FSA controller on the testing set.

tolerance ranges to attract the trajectory toward the targets.
However, these predefined surfaces are not necessarily the
optimal ones. To illustrate this, let us consider a simple
example of the double integrator system. The system is

described in state-space representation as follows:

˙x(t) =
[

0 1
0 0

]
x(t) +

[
0
1

]
u(t), (10)
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Figure 11. The lookahead controller behaviour on the target set
of the two-tanks system. The tanks levels and desired targets are
represented by a solid and dashed line, respectively.

where the control policies are

u(t) ∈ {−1, 0, 1}. (11)

In Figure 14, we can see three different partitionings
of the state space in order to generate symbols. First, the
optimal partitioning is obtained using the invariant analysis

Figure 12. Lookahead control with limited horizon.

Figure 13. State-space trajectory for the two-tank system ex-
hibiting failure of the lookahead controller. The FSA controller
and the lookahead controller are represented by a dashed line and
a solid line, respectively. The targets are marked by circles and the
initial state is marked by a square.

described in Koutsoukos et al. (2000), which is marked by
solid lines in the figure. Then, in Figure 14 (a), dashed lines
mark the partitioning used by the experiment reported in
this paper. It can be seen how poorly this partitioning is
aligned to the optimal one. The partitioning is not good at
grasping the specific dynamic of this system, because the
input symbols may be generated when there is no relevant
change in the vector field.

On the other hand, the partitioning could be better
aligned to the optimal one if the surfaces are rotated by
an angle as shown in Figure 14 (b). That way, we would
have a chance of obtaining a better performing FSA, as the
input symbols generated can better reflect relevant vector
field changes. It is, therefore, a promising research pursuit
to optimise the FSA controller in terms of both symbol
generation and control sequence generation. Some prelim-
inary work has been done in this direction, revealing that
involving symbol generation in the evolution process can
greatly increase the difficulty for the algorithm to converge
to meaningful results. The search space seems to become
so large that with a reasonably large computing resource
as was used in work reported here, even some moderately
performing FSA controllers could not be evolved. Further
research in this direction should be done in the future.

5.3. Potential of lookahead controller

A lookahead controller was implemented so that a com-
parison study between the evolved FSA controller and the
lookahead controller could be carried out (Figure 12). The
experimental results demonstrate that the evolved FSA con-
troller could achieve all six control targets used in the train-
ing stage, but that the lookahead controller failed in three
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Figure 14. Double integrator partitioning. The circle represents the target and the solid lines are the optimal partitioning (Koutsoukos
et al. 2000), while the dashed line shows a partitioning based solely on the target.

of them (when the water level of the second tank was asked
to be higher than that of the first tank). In addition, the real-
time execution speed of the lookahead controller can give
rise to the issue of applicability in real-world situations,
since the simulation time required to process a lookahead
tree of possible states can become too long, even for fast
systems.

With all these downsides, the lookahead controller still
remains as a very useful method to apply because it follows
a very forthright design procedure. Our study shows that
some plant topologies are very amenable to the design pro-
cedure of lookahead control, but some others are not. For
example, in the original topology of the two-tank system,
the only way to fill the second tank is through the switch
between the first and the second tanks, which makes it diffi-
cult to satisfy the target of the second tank without sacrific-
ing that of the first one when the water level of the second
tank is targeted to be higher than that of the first tank. How-
ever, if we modify the control plant by, for example, simply
adding a pump directly to the second tank, the modified
plant will then become very amenable to lookahead con-
troller design. It is, therefore, very interesting to ask the
following question: is it possible to explore the variations
of control plants, so that we can find a control plant that can
best match a controller design in terms of optimising the
performance of the overall control system?

The answer seems to be positive. Even though most
controller design still follows a sequential design procedure
– i.e., we first fix the plant, and then try to find the best
controller for the control plant – a real mechatronic system
design philosophy supports concurrent design. That is, we
should also allow the plant to be variable, and try to find a
best match of the controller to the plant.

While it is reasonable to co-evolve both FSA controllers
and hybrid bond graph structures which can in combination
represent the complete hybrid system, the lookahead con-
troller can be a better choice to represent the controller part.
This is because for each candidate of plant, there exists a
myriad of possibly good FSA controllers to be explored
by evolutionary computation to locate a best one for the
given plant. Because we also need to concurrently explore
the space of the plants, the resulting work is an exploration
of the product of space of controllers and space of plants,
which may often be prohibitively large, if not impossible.
In addition, the evolution can waste too much time in opti-
mising the controller for a poor candidate of plant without
promise.

In contrast, if we select a lookahead controller for the
controller design, then we can avoid the situation of explor-
ing in a product of spaces, as encountered in the previous
approach. This is because for all candidates of plants, the
design of a lookahead controller follows the same forthright
procedure. In the condition that the lookahead horizon is
predefined, each candidate of plant corresponds to a single
lookahead controller. As a result, we only need to explore
the design space of plants, and are relieved of all the work
of exploring the other space of controllers. More details of
this thrust of research will be presented in the future.

6. Conclusion

From the experimental results, we can see that the proposed
approach that combines a genetic algorithm to explore the
design space of FSA controllers with a hybrid bond graph
to represent a hybrid mechatronic system can success-
fully design controllers for given plants to meet predefined
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control targets. The case study of the two-tank system de-
sign also demonstrates that, at least in this case, the evolved
FSA controller generalises well to achieve different con-
trol targets than those used for training in the evolutionary
process.

Even though the evolved FSA is complex, the process of
interpreting the rules is very forthright. In addition, the in-
terpreted individual rules are clear and simple. With enough
motivation, one could eventually reverse engineer the set of
rules used in the FSA. In contrast, interpreting a multi-
layered neural network can be much more challenging, be-
cause there exists no systematic way of interpretation.

To obtain an optimised FSA controller using an evolu-
tionary approach requires significant computational power.
However, the process of evolving/optimising the FSA con-
troller is done offline. Once the optimal FSA controller is
obtained, the controller can be easily implemented online,
in an embedded system, for example, with no difficulty. The
evolved FSA controller may appear to be complex, but its
implementation and online execution will not require much
computing effort and resources. It can, therefore, be applied
very efficiently in the deployment stage.

On the other hand, the lookahead controller does not
require any prior offline training or optimisation, but needs
to repeatedly integrate the system model online, which
drastically increases the computation power requirement
at runtime. However, the lack of expensive training makes
the lookahead controller an attractive controller representa-
tion, especially for exploring the open-ended design space
of plants to achieve a further optimised performance of
the overall hybrid mechatronic systems (Dupuis, Fan, and
Goodman 2012).

While both approaches can be computationally inten-
sive, the computational cost is simply moved between of-
fline and online, depending on the architecture chosen.

Through the above analysis of this comparative study,
more insight is obtained which can be summarised in the
following conclusions:

(1) When the plant is modifiable, it is more suitable to
use a lookahead controller as the representation of
the controller. If, instead, the Finite State Machine
(FSM) is used as the representation of the con-
troller, the search space becomes so prohibitively
large that it prevents the evolutionary algorithm
from achieving a reasonably good result in a lim-
ited timeframe, at least using the methods described
here.

(2) When the plant is given and fixed, it is more suit-
able to use an FSM as the representation of the con-
troller. Even though it takes more time to evolve an
optimised FSM controller offline, the online execu-
tion time of the FSM controller is much shorter than
that of the lookahead controller. In addition, the per-
formance of the lookahead controller is dependent

on the given plant – i.e., for a certain given plant,
it is difficult for the lookahead controller to always
achieve good performance, as is demonstrated by
the case study in this paper.

It is, therefore, recommended that the following prag-
matic steps be taken in a systematic procedure for evo-
lutionary design of both controller and plant of a hybrid
dynamic system.

(1) First, use a lookahead controller as the controller
representation and allow both the plant and the con-
troller to be modified in a concurrent evolutionary
design stage. As outputs of this stage, an opti-
mised plant is obtained along with its lookahead
controller.

(2) Then use the optimised plant evolved in the first
stage as the given plant, and using an FSM repre-
sentation for the controller, evolve a new controller
for that given plant.

(3) Compare the performance of the FSM controller
with that of the lookahead controller. If the per-
formance of the FSM is not worse than that of
the lookahead controller, use the FSM controller.
Otherwise, if the lookahead controller satisfies the
requirements for online execution time for the ap-
plication, select it as the controller.

An important step for future research is to apply this
approach in a real-world application, in which the plant to
be controlled is often complex and its dynamics are not
known in advance. To obtain a model so that we can apply
the approach, it may be advisable to use surrogate models
(Jin 2005; Lim, Jin, Ong, and Sendhoff 2010) to represent
the plant, which can also help to cope with uncertainty and
noise in real-world applications. In the current application,
only the topology information of the finite state automaton
is encoded. In real-world applications, it is of great interest
to extend the approach so that both parameters and topol-
ogy can be optimised simultaneously in the evolutionary
design process. In this situation, memetic computing (Ong,
Lim, and Chen 2010; Chen, Ong, Lim, and Tan 2011) can
be a very suitable approach, in which local search methods
can be applied and can focus more on parameter optimisa-
tion, while evolutionary search focuses more on topology
exploration.
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sity, Québec, Canada in 2003 and 2007, re-
spectively, and a PhD degree in Mechanical
Engineering from the Technical University
of Denmark in 2011.

Zhun Fan received the BSc and MSc
degrees in Control Engineering from
Huazhong University of Science and Tech-
nology, Wuhan, China, in 1995 and 2000,
respectively, and the PhD degree in elec-
trical engineering from the Michigan State
University, USA, in 2004.

From 2004 to 2007, he was an Assis-
tant Professor at the Technical University

of Denmark. From 2007 to 2011, he was an Associate Professor at
the Technical University of Denmark. He is currently a Professor
and Head of the Department of Electrical Engineering at Shantou
University, Guangdong, China.

Dr. Fan has been principle investigator of various projects spon-
sored by Danish Research Agency of Science Technology and
Innovation. His research is also supported by National Science
Foundation, USA, and National Natural Science Foundation of
China. His major research interests include evolutionary compu-
tation, intelligent control and robotic systems, robot vision and
cognition, MEMS, design automation and optimisation, intelli-
gent power system and transportation system, etc.

Dr. Fan is a Senior Member of the Institute of Electrical and
Electronics Engineers (IEEE). He is also a member of ACM and
ASME.

Erik D. Goodman is PI and Director of the
BEACON Center for the Study of Evolu-
tion in Action, an NSF Science and Tech-
nology Center headquartered at Michigan
State University and funded beginning in
2010. His research centres on application of
evolutionary principles to solution of engi-
neering design problems. He received the
PhD in computer and communication sci-

ences from the University of Michigan, Ann Arbor, in 1971. He
became Asst. Prof. of Electrical Engineering and Systems Science
in 1972, Assoc. Prof. in 1978 and Prof. in 1984, all at Michigan
State University, where he also holds appointments in Mechan-
ical Engineering and in Computer Science and Engineering. He
directed the Case Center for Computer-Aided Engineering and
Manufacturing from 1983 to 2002, and MSU’s Manufacturing Re-
search Consortium from 1993 to 2003. He has co-directed MSU’s
Genetic Algorithms Research and Applications Group (GARAGe)
since its founding in 1993. He is co-founder and vice president
of Red Cedar Technology, Inc., a firm that develops design opti-
misation software for use in industry. He was chosen Michigan
Distinguished Professor of the Year, 2009, by the Presidents Coun-
cil, State Universities of Michigan.

Prof. Goodman was Chair of the Executive Board and a Senior
Fellow of the International Society for Genetic and Evolutionary
Computation, 2003–2005. He was founding chair of the ACM’s
Special Interest Group on Genetic and Evolutionary Computation
(SIGEVO), serving from 2005 to 2007.

References
Ashlock, D. (2006), ‘Evolving Finite State Automata’, in Evo-

lutionary Computation for Modeling and Optimization, New
York: Springer, pp. 143–166.

Bemporad, A. (2003), ‘Modeling, Control, and Reachability Anal-
ysis of Discrete-Time Hybrid Systems’, Technical Report,
University of Siena, Dept. of Information Engineering.

Benson, K. (2000), ‘Evolving Finite State Machines With Embed-
ded Genetic Programming for Automatic Target Detection’,
Proceedings of the 2000 Congress on Evolutionary Compu-
tation, 2, 1543–1549.

Buisson, J., Cormerais, H., and Richard, P.Y. (2002), ‘Analysis of
the Bond Graph Model of Hybrid Physical Systems With Ideal
Switches’, Proceedings of the Institution of Mechanical En-
gineers, Part I: Journal of Systems and Control Engineering,
216(1), 47–63.

Chen, X., Ong, Y.S., Lim, M.H., and Tan, K.C. (2011), ‘A Multi-
Facet Survey on Memetic Computation’, IEEE Transactions
on Evolutionary Computation, 15(5), 591–607.

Chen, W.N., Zhang, J., Chung, H., Zhong, W.L., Wu, W.G.,
and hui Shi, Y. (2010), ‘A Novel Set-Based Particle Swarm
Optimization Method for Discrete Optimization Problems’,
IEEE Transactions on Evolutionary Computation, 14(2),
278–300.

Cormerais, H., Buisson, J., Richard, P., and Morvan, C. (2008),
‘Modelling and Passivity Based Control of Switched Systems
From Bond Graph Formalism: Application to Multicellular
Converters’, Journal of the Franklin Institute, 345(5), 468–
488.

Dunay, B.D., Petry, F.E., and Buckles, B.P. (1994), ‘Regular Lan-
guage Induction With Genetic Programming’, Evolutionary
Computation, 1994. IEEE World Congress on Computational
Intelligence., Proceedings of the First IEEE Conference on,
1, 396–400.

Dupuis, J.F., Fan, Z., and Goodman, E.D. (2012), ‘Evolutionary
Design of Both Topologies and Parameters of a Hybrid Dy-
namical System’, IEEE Transactions on Evolutionary Com-
putation, 16(3), 391–405.

Fan, Z., Seo, K., Hu, J., Goodman, E.D., and Rosenberg, R.C.
(2004a), ‘A Novel Evolutionary Engineering Design Ap-
proach for Mixed-Domain Systems’, Engineering Optimiza-
tion, 36(2), 127–147.

Fan, Z., Wang, J., Achiche, S., Goodman, E., and Rosenberg, R.
(2008), ‘Structured Synthesis of Mems Using Evolutionary
Approaches’, Applied Soft Computing, 8(1), 579–589.

Fan, Z., Wang, J., and Goodman, E. (2004b), ‘Exploring Open-
Ended Design Space of Mechatronic Systems’, International
Journal of Advanced Robotic Systems, 1, 295–302.

Fogel, L.J. (1962), ‘Autonomous Automata’, Industrial Research,
4, 14–19.
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